

SEER*Abs v2.24

System Administration Reference

March 2025

ii

Table of Contents

Table of Contents ... ii

Section 1: Using SEER*Abs in a Cancer Registry ... 1

Getting Started ... 1

Section 2: SEER*Abs Databases .. 3

Main Database .. 3

Subtypes .. 5

Defining a New Record Type ... 5

Defining New Properties ... 6

Section 3: SEER*Abs Workflow .. 7

Section 4: Configuring SEER*Abs .. 10

Main Configuration .. 10

Defining Layouts ... 11

Configuring Searches & Filters ... 11

Defining Scripts ... 12

Defining Lookups ... 13

Defining Edits ... 13

Managing Coding Manuals .. 14

Section 5: Managing User Accounts ... 15

Section 6: Data Security .. 17

Section 1: Using SEER*Abs in a Cancer Registry

SEER*Abs was designed using an extensible architecture so that it can be used by any cancer

registry. The screen layouts, search tools, extract files, integrated edits, and synchronization

module can be configured to meet the needs of the registry. The synchronization module can be

configured to load reference data from external files or directly from the registry’s main database,

regardless of the registry’s database platform.

The registry’s information technology (IT) staff are responsible for configuring, deploying, and

maintaining SEER*Abs. The technical skills required by the system administrator are described

below.

Configuring SEER*Abs – Basic Programming Skills Required

In order to create custom layouts or configure other SEER*Abs components, the SEER*Abs

system administrator must be an IT professional who has the ability to modify small

programs (scripts) and XML configuration files. They must have the ability to write and

optimize scripts using the Groovy scripting language. Groovy is a scripting language for the

Java platform and uses syntax that is very similar to Java. Online tutorials and references

are available at http://groovy-lang.org/.

Management of Laptop Installations

The registry’s SEER*Abs administrator must oversee the deployment of the registry’s

version of SEER*Abs to the abstractors’ workstations. This involves configuring the

SEER*Abs Installer software for the registry. Basic computing skills are required including a

working knowledge of file and folder structures in the PC environment.

Data Management

The registry’s SEER*Abs administrator will oversee the synchronization of data from

SEER*Abs with the registry’s data management system (DMS). They will need to modify

export scripts in SEER*Abs to ensure that the data collected by the abstractors are exported

to files that can be imported into the registry’s DMS. They may need to pull data from the

registry’s DMS to populate lookups, facility lists, physician lists, and reference data (the

amount of data pulled from the registry’s DMS varies and is based on registry customization

of SEER*Abs). These tasks require a basic understanding of the registry’s data

management system.

Getting Started

Spend at least one day seriously reviewing the SEER*Abs Demo Version to understand the features

and test drive SEER*Abs before configuring the system for your registry.

1. Perform an Admin Installation of SEER*Abs as described in the SEER*Abs Installation Guide.

2. Review the folder structure for the admin installation of SEER*Abs (shown below).

3. Log in to SEER*Abs and explore the layouts and scripts provided in the distribution version

of SEER*Abs and/or the demonstration version. Review the SEER*Abs Users Manual to gain

an understanding of the application from the abstractor’s perspective.

4. Review all chapters in this reference to understand the capabilities of the software.

Experiment by making changes to layouts and scripts. Create records within the system to

see how your changes look and work.

http://groovy-lang.org/

2

5. Once you have a working knowledge of the system, define the layouts and customize the

actions for your registry.

• seerabs – main application folder. SEER*Abs must have

read/write access to that folder. SEER*Abs will auto-create sub-

folders and configuration files within the folder.

• conf – configuration folder. The files in this folder define the

screen layouts, actions, import and export routines, etc. The files

in the conf folder are required by SEER*Abs and cannot be

renamed. Although the conf files are text files, it is recommended

that changes be made through the SEER*Abs configuration editor

rather than an external editor.

• db – database folder. The db/seerabs older contains the main

database containing data created within SEER*Abs. The

db/seerabs-ref folder contains reference data to use when

abstracting. See the SEER*Abs Database section of this manual

for more information.

• input – default location of files imported into SEER*Abs. This is

only a default, import files can be loaded from other locations.

• install-2.0 – SEER*Abs installer files. The folder name indicates

the version. Refer to the SEER*Abs Installation Guide for more

information.

• jre –embedded Java Runtime Environment.

• lib – library folder containing JAR files required by SEER*Abs.

• log – location of text files containing log messages. All error

messages are written to the log including errors caused by

registry-maintained scripts and layouts. If an abstractor reports a

problem in using SEER*Abs, the system administrator should

review the log file within the abstractor’s installation.

• output – default location of files extracted from SEER*Abs. This

is only a default, scripts control where the data are written.

3

Section 2: SEER*Abs Databases

SEER*Abs databases are implemented as Apache Derby databases (http://db.apache.org/derby).

There are two databases in SEER*Abs:

Main Database

The main database is a read/write database containing records created within SEER*Abs, user

account information, and AFLs. AFLs may be imported from files or loaded from the registry’s

database, they are included in the main database because they can be modified by the abstractor

and exported.

Indexes for the main database are stored in the db\seerabs-indexes folder. If this folder does not

exist, the indexes will be auto-generated when SEER*Abs is started.

Reference Database

The reference database is a read-only database of patient data imported from the registry’s main

database. Registry configuration settings determine the amount and type of data that are included

in reference data. These data may include consolidated patient data from the registry database,

pathology records, or other types of records. In addition, lookups, physician lists, and facility lists

are also stored in the reference database.

The indexes for the reference database are stored in the db\seerabs-ref-indexes folder.

Reference databases from one installation can be imported into another installation using the

Import Reference Database item on the File menu. This completely replaces the reference

database in the target installation.

SEER*Abs Data Types

SEER*Abs handles data using the concept of “entity”. An entity is an instance of a particular type

of data, for example an abstract record, or an AFL. Every entity has a type associated with it; those

types cannot be customized and are described in the following table.

Entity Type

Type name

to use

in Scripts

Database Description

AFL AFL main

Abstract Facility Lead. This entity provides a

mechanism for assigning and tracking a request for an

abstract. AFLs are imported into SEER*Abs and can

be used as a list of “things to do” for the abstractor.

The fields used in an AFL can be defined by the

registry.

Record RECORD main

Records created in SEER*Abs. SEER*Abs can used to

create abstract, casefinding, or registry-defined types

of records. Data cannot be imported into SEER*Abs

record entities.

http://db.apache.org/derby

4

Entity Type

Type name

to use

in Scripts

Database Description

User USER main

SEER*Abs user accounts. SEER*Abs supports a single

administrative user account (username = admin) and

multiple abstractor accounts. The admin user account

is created during the initial installation on the

administrator’s computer.

Users cannot be imported; they need to be created

within the application.

Facility FACILITY reference

The facilities associated with the registry can be

defined in facility entities. These may include

hospitals, labs, etc. A default facility can be entered

during the login process. Facility lists are imported

and cannot be modified in SEER*Abs.

Physician PHYSICIAN reference

The physician entity is used to store the physicians

associated with the registry. This allows the user to

select the physician from a lookup while entering

record data. The physician list is imported and cannot

be modified in SEER*Abs.

Reference

Record

REFERENCE-

RECORD
reference

The Reference Record entity can be used to store

individual reports (non-consolidated data) from the

registry’s DBMS. The registry can configure the

system to include certain types of records (pathology

reports, for example) in the system as a reference for

the abstractors. Reference data are imported and

cannot be modified in SEER*Abs.

Reference

Patient

REFERENCE-

PATIENT
reference

The Reference Patient entity is designed to store

consolidated patient reference data. These data could

be imported from files or loaded from the registry’s

DBMS. Reference Patient data cannot be created or

modified in SEER*Abs.

Lookup N/A * reference Lookup, used to provide a list of valid codes for a field.

* Lookups are handled a little bit differently than the other entity types since they don’t have customizable properties. For

that reason specific methods have been added for them in the script utility methods (see inline help for script methods).

The second column provides the string that needs to be used when referencing a particular type in

a script (many utility methods require a type as a parameter). The third column shows the

database in which the entity is persisted.

5

Subtypes

While it is true that the types are not customizable, some of them have a subtype which is

customizable. It is true for the Record and Reference Record types. Which subtype they support is

defined in the main configuration file. For the records, the following property is used:

supported.record.subtypes=abstract

And for the reference records, the following is used:

supported.ref.record.subtypes=naaccr

Those lists of subtypes can be modified; there is no restriction on the values of the reference

record list, but “abstract” is required in the record list.

Defining a New Record Type

Use the following steps to add a new record type:

1. Edit the “supported.record.subtypes” property in the main configuration file, add a new

subtype ID for the record type you would like to create (ID should be kept short, for

example “casefinding”, “short_hrec”, special_study”, etc…). Let’s assume we are adding

support for casefinding, the updated property would look like this:

 supported.record.subtype=abstract,casefinding

2. In the same configuration file, add a new property for the prefix:

 record.prefix.casefinding=CF-

3. In the same configuration file, optionally update the properties that determine which recod

type can be copied from which other record type (if not configured, you won’t be able to

create other record type from the new one and vice-versa). See the comments in the

configuration file for more details on how those rules are defined.

4. In the lookup configuration file, add a label for the new record type:

<lookup id=”lkup_internal_rec_subtype”>

 <entry code=”abstract” label=”Abstract” />

 <entry code=”casefinding” label=”Casefinding” />

</lookup>

5. Restart the application.

6. In the Data Entry configuration tab, under “Supported Record Types”, edit the XML file that

determines which fields are displayed in the data entry form and how. Note that the XML

file also defines which fields are supported by this record type, so supporting a new field for

our new casefinding type is as simple as adding the field in the XML file. The configuration

file editor contains a lot of inline help about creating and maintaining the data entry forms.

7. In the Data Entry configuration tab, under “Supported Record Types”, edit the Groovy file

that determines how the records for the new type will be extracted. Although other

methods are supported in SEER*Abs, creating a data file is by far the most common one.

The extract is defined as a Groovy script that takes the output file as a parameter. The

default version queries the database, fetches all the records of that particular type that are

6

ready to be extracted and output them in the file, one by one. The script is fully

customizable.

Defining New Properties

Lookups are a special type of entity and are defined in their own configuration file (see Defining

Lookups section). All the other entity types are defined in a Layout. That layout contains the

properties that should be shown on the screen along with some other information (property type,

label, lookup, etc…). While it is true that the layout is mainly used to define where the fields

should be shown on the screen, it is also used to define which properties are supported for which

entity type. An entity can be seen as a map of keys and values. The keys are the field names

defined in the layout and the values are the text corresponding to those field names (it can be the

text typed by the abstractor in the editor, or the text downloaded through the synchronization

module). For efficiency, a key corresponding to an empty (null) value is not saved in the database;

that means the absence of a key in a map should be interpreted as the key having an empty value.

That also means different entities of the same type will end up with different keys, depending

which values are missing. For that reason, there are no database constraints linking the properties

to the entity types; saving an entity in the database means saving a generic mapping of keys and

values; the database is unaware of which properties the mapping should have depending on the

entity layout.

With this design, adding a new property to a given type is as simple as adding a field to the

corresponding layout. Once added, the abstractor will be able to provide a value to that field; that

value will be persisted in the database and made available to the synchronization scripts to be

exported. Any properties can be defined in a layout, but a few of them are used by the application

and therefore SEER*Abs needs to be aware of their name. Most of those internal properties can be

re-defined in the main configuration in case they conflict with other regular properties.

There are a few other properties used internally by SEER*Abs (like a database ID for example) but

those should never be referenced by any scripts and therefore are not described here (they usually

start with a double underscore).

Having to re-define an internal property in the main configuration should be extremely rare. For

example if a new reference record type is added and has to use the property “dateLastModified”,

the internal property with the same name could be re-defined as “dateLastModifiedSeerabs” to

avoid any conflict. But the script downloading that new reference record type could also save that

new “dateLastModified” property under a different name and therefore also avoid the conflict. Note

that if a property is re-defined, all the data needs to be fixed (for reference data, it means deleting

the old data and re-importing it; for the main data it means running an action script that would

load all the entities of that type and for each of them remove the old property and re-add the new

one).

Because empty values are not saved in the database, different entities of the same type could have

different properties saved in the database. For that reason, a script cannot make any assumptions

on which properties is supposed to be contained in an entity. This can be annoying when trying to

write scripts that reference hundreds of properties. To solve that problem, a utility method is

provided; for a given type and subtype, it returns a list of properties as they are defined in the

corresponding layout. See the Script Methods help menu for more details about utility methods.

7

Section 3: SEER*Abs Workflow

Before configuring SEER*Abs, it is important to decide how it will be used in your registry. As

shown in the diagram below, SEER*Abs facilitates the flow of data to and from the abstractors in

the field to the registry. Configuration settings determine the amount and type of data made

available to abstractors as a reference; and the types of data collected within SEER*Abs.

SEER*Abs is designed as an Abstracting Tool to be used in the field to create abstract records and

other types of records.

An important aspect of the workflow is for the Abstractor to be able to organize her work. This is

accomplished through the Worklist page which displays listings of Abstract Facility Leads (if they

are turned on in the main configuration file), and abstracted records. The worklist can be filtered

to show only the outstanding work.

SEER*Abs communicates with the registry through the synchronization module to export the

created records and maybe import the reference data. That default workflow is shown in the

following figure:

8

By configuring the synchronization module, a Registry can define how the records and AFLs are

exported and how the reference data is imported. By configuring the editor module, a Registry can

define how the records are created (what fields, what format, etc...).

Abstractors need to know whether a record has just been created, whether all the work is done for

it or whether it has already been exported. A status field is used for that purpose. Only the AFL

and the RECORD entity types have that field. The possible values are defined in the lookups

lkup_internal_alf_status and lkup_internal_rec_status. Those lookups cannot be deleted from the

configuration but their content can be modified and that is the main mechanism to customize the

SEER*Abs workflow.

The following AFL statuses are provided with the default configuration:

Status Code Status Label Description

1 NOT PROCESSED No work has been performed on this AFL.

2 IN PROGRESS Some work has been performed on this AFL

3 NOT ABSTRACTED
The work on this AFL is done; it has not been abstracted

and a reason has been provided.

4 ABSTRACTED
The work on this AFL is done; an abstract has been

created.

5 ARCHIVED This AFL has been exported.

The following record statuses are provided with the default configuration:

Status Code Status Label Description

1 IN PROGRESS Some work has been performed on this record.

2 COMPLETED No more work needs to be performed on this record.

3 ARCHIVED This record has been exported.

Note that changing the label of a status has no impact on the workflow and no script needs to be

modified in that case. On the other hand, many scripts use the status code to search entities and

load them (for example the export script fetches all the records with a status of ‘COMPLETED’).

Adding, removing or changing the meaning of a status (how it is supposed to be used by the

scripts) require to review each script and make sure the way it uses the statuses (if it does use

them) is still correct.

SEER*Abs never deletes any record or AFL automatically. A special action is provided (Purge

Entities) to delete any entities with a status of ‘ARCHIVED’. That action can be run right before

exporting records so the ones exported from the previous synchronization session are deleted and

9

the new ones are marked as ‘ARCHIVED’ after being exported. But the user has to trigger the

action manually and exactly when that should happen must be a Registry policy.

10

Section 4: Configuring SEER*Abs

The SEER*Abs configuration manager can be used to customize all system features including data

entry screens for records, the Search page interface, and synchronization scripts. The manager

allows you to open files in the SEER*Abs configuration editor by clicking the “Edit” link of the

corresponding file.

The configuration manager, as well as the configuration file editor, contains extensive help within

the application.

The configuration files fall in one of the following topics:

• Main Configuration – a single configuration file containing system parameters and

properties. These include system options, defaults, and global variables.

• Layouts – separate configuration files defining the screens displayed when you view or

modify a record, AFL, patient set, facility, physician, or user account. These include the

layouts used to display records created in SEER*Abs and reference patient sets and records.

• Layout Scripts – a single configuration file defining scripts that can be referenced in any of

the layout files

• Customized Popups – layouts for dialogs to prompt the user for information. These can

be referenced in any script to request user input.

• Searches & Filters – these files define the filters and tables used to display and find data

on the Search page, the Worklist, and the User account manager.

• Scripts – Groovy scripts run to create extract files, load reference data from external files

or directly from a database, and utility scripts used to create AFLs and implement edits.

• Scripts Shown in the Action Menu – special Groovy scripts that the user can execute by

selecting the item from the “Action” menu.

• Lookups – a single configuration file defining lookup tables for data fields. This file

contains full definitions for internal lookups and reference information for external lookups.

• Edits – source code for edits to test the validity of data fields. Two sets of edits are

integrated into SEER*Abs: edits developed by the NCI SEER Program that cover data fields

submitted to SEER; and edits developed within SEER*Abs. The SEER*Abs edits may include

edits shipped with the software as well as the edits created by your registry staff.

• Manuals – the manuals appearing to the abstractor through the help menu. Manuals can be

removed, updated or added.

• Dictionaries – the NAACCR XML dictionaries that can be used to handle non-standard fields

when importing and exporting records

Each of those topics is explained in details in the following sections.

Main Configuration

11

Global configuration parameters are set in a main configuration file “seerabs.properties”. The file

can be accessed through the Main Configuration section in the Configuration page.

Review and adjust the global parameters before configuring the layouts and scripts. Changes to

some parameters are applied when you save and close the configuration editor. Other changes are

not applied until you close and restart SEER*Abs, as prompted. Any changes made via a text

editor will only be applied when you restart SEER*Abs.

Every parameter is listed in a table in the Configuration page. Click on a label to go the

parameter’s definition in the configuration file editor. The main configuration file also contains

extensive help for each parameter.

Defining Layouts

XML configuration files define the display screens for record, AFL, patient set, facility, physician,

and user account data. There is a separate XML file for each of the following:

• AFL page

• Data Entry screen for each record type defined in the main configuration

• Screens to view reference data:

o Facility

o Physician

o Any record type defined in the main configuration

• User Account page

The layout files should be edited via the SEER*Abs editor to take advantage of the validation,

preview, and auto-refresh features. However, the XML files are stored in the conf installation

folder and can be opened with any text editor.

Instructions on how to update the layouts are provided in the Configuration page.

Layouts can also be used to define User Input dialogs that can be called from Groovy scripts. See

the Customized Popups section in the Configuration page for more information.

Scripts can be used in a layout file for various purposes. See the “Adding embedded action rules”

section in the layout file help text for more information. To share a script between multiple layout

files, define the script in the “editor-scripts.xml” file.

Configuring Searches & Filters

XML configuration files are used to define screen layouts for the Worklist table, User account

manager, the three tabs of the Search page, the facility lookup, and the physician lookup. These

configuration files are defined as layouts with two sections: criteria-layout defines the filters and

the table-layout defines the table in which the results are displayed. Filters cannot always be

defined. The search and filter layout files are listed below.

• Facility (search-facility.xml) – the layout of the Facility tab of the Search page.

12

• Facility Lookup (search-facility-lkup.xml) – the layout of the internal lookup for facilities.

A single search box is shown in that lookup; for that reason the criteria defined in the

configuration file is not used to show different search fields, but instead it is used to know

which fields should be searched when the user types text in the unique search box.

• Patient Data (search-patient.xml) – the layout of the Patient Data tab of the Search page.

• Physician (search-physician.xml) – the layout of the Physician tab of the Search page.

• Physician Lookup (search-physician-lkup.xml) – the layout of the internal lookup for

physicians. A single search box is shown in that lookup; for that reason the criteria defined

in the configuration file is not used to show different search fields, but instead it is used to

know which fields should be searched when the user types text in the unique search box.

• Users (search-user.xml) – the layout of the Users Account manager. No criteria can be

defined for that configuration file.

• Worklist (search-worklist.xml) – the layout of the Worklist. The filter in the worklist cannot

be customized but it does use a free-text search box. The criteria section defined in this

configuration file is used to know which fields should be searched when the user types text

in that free-text search box.

The searches in SEER*Abs are implemented using an external library called Lucene

(http://lucene.apache.org/java/docs).

Instructions on how to update the search layouts are provided in the Configuration page.

Defining Scripts

Groovy is a scripting language for the Java platform. The Internet has several Groovy references

including the Groovy home page at http://groovy-lang.org/. The official site contains a lot of

information, including tutorials for people new to Groovy.

The Configuration page contains many application scripts that can be maintained using the

configuration file editor. The editor contains additional information and help on how to write and

maintain the scripts.

Scripts can be made available under the Action menu item. Action scripts are very similar to

regular scripts; the difference is that they can be added, removed or modified without any

consequences in the application; while only the content of a regular script can be modified (for

example the extract script for abstract is called script-extract-record-abstract.groovy; deleting that

file outside of the application will result in a failure during the startup process). Because the action

scripts can be added and removed, they have their own directory (conf/action/).

Writing action script is not different than writing regular scripts; the scripting language (Groovy,

see http://groovy-lang.org/) is identical. One minor distinction is that the regular scripts usually

receive data in their context (for example, the script that runs when a record is saved receives that

record in its context so it can be modified by the script) while the action script do not receive any

data in their context (since there are triggered by the user selecting them from a menu item).

http://lucene.apache.org/java/docs
http://groovy-lang.org/
http://groovy-lang.org/

13

Once an action script has been defined, it is available in the Action menu. The default

configuration provided with SEER*Abs contains a single action script called “Purge Entities”; it

deletes from the database any AFL or RECORD that have a status of ARCHIVED.

Defining Lookups

Lookup tables provide a list of valid values for a field. Typically, this is a list of codes and a user-

friendly description of the code. When a lookup is associated with a field in a layout, a light bulb is

displayed next to the field. The lookup table is displayed when the user clicks the light bulb, they

may then select a value from the list.

There are five types of lookups: standard, facility, physician, collaborative stage, and site specific

surgery. The standard lookup is a mapping of unique codes to labels. Standard lookups are

defined in a single configuration file (lookups.xml). The definition may consist of the full mapping

or may indicate that the mapping is to be imported using one of the synchronization scripts.

The other four types of lookups are more complex and cannot be defined in XML. The facility and

physician lookups can be customized. The site-specific surgery and staging lookups cannot be

modified or customized.

Instructions on how to maintain the lookups are provided in the Data Entry section of the

configuration page under the Lookups tab.

Defining Edits

Computerized edits are integrated into SEER*Abs to test the validity of data. In SEER*Abs, the

edits are executed on records created in SEER*Abs, they are not executed on reference data. The

following sets of edits are available in SEER*Abs:

• Internal system edits enforce data type constraints in layouts. The system edits cannot be

modified, they are defined in the Layout XML file (for example defining a field as numeric

will trigger a system edit if the abstractor tries to enter a non-numeric value).

• SEER*Abs edits are defined and maintained by registry staff. Samples are provided in the

configuration file shipped with the application. SEER*Abs edits apply to any record types

created in the application, but it is possible to restrict them to some particular types from

within the edit file itself.

• SEER edits cover fields submitted to SEER and represent the edits implemented in the

SEER*Edits software. The SEER edits are defined in XML files provided and maintained by

the SEER*Edits development team. The SEER edits configuration file cannot be modified.

By default the SEER edits are not loaded in SEER*Abs but that behavior can be changed

through a configuration variable in the main configuration file. If loaded, the SEER edits are

applied to any record type having an ID starting with “abstract” (so in the default

configuration, they are applied only to the Abstract records).

• NAACCR edits are edits translated from the NAACCR metafile. Those edits are maintained

by IMS and cannot be modified; they are automatically updated by the installer when a new

version of the metafile becomes available. By default the NAACCR edits are not loaded in

SEER*Abs but that behavior can be changed through a configuration variable in the main

configuration file. If loaded, the NAACCR edits are applied to any record type having an ID

14

starting with “abstract” (so in the default configuration, they are applied only to the Abstract

records).

In addition, other sets of edits can also be loaded; refer to the help on the Edits tab of the Data

Entry section in the Configuration page.

SEER*Abs edits are implemented in Groovy, the scripting language for the Java platform that is

also used for SEER*Abs scripts. Edits uses a small subset of the Groovy syntax. A working

knowledge of regular expressions and Groovy logic statements are needed to maintain edits in

SEER*Abs. To define a new edit, it is recommended that you copy-and-paste the code from an

existing edit and use that code as a template.

Guidelines for writing the Groovy code for a registry edit:

• An edit error is triggered if the code returns FALSE for the record or patient set. The

edit passes if the code returns TRUE.

• Use the Groovy code of a similar edit as a template.

• A context is a Java naming system. Contexts are used to define arrays, hash tables,

and functions used by the edits. For example, there are a large number of contexts

defined for the SEER edits. Primarily, these represent data tables required by the

SEER edits logic. Contexts are defined within the XML context tag. Many examples

are provided in the SEER edits XML file. Your Groovy code may include references to

contexts that you define and the contexts defined for the SEER edits.

Managing Coding Manuals

SEER*Abs is shipped with several common coding manuals, but those can be removed and others

can be added through the Coding Manuals section in the configuration page.

All manuals are kept in the “conf/manuals” folder; the manuals are typically PDF files, but can be

on any type as long as the laptop can handle the file type (to know whether the laptop can handle

a particular file type, double click the file; if it successfully in an application, then it can be handled

within SEER*Abs).

Instructions on how to add, remove or modify manuals are provided in the Coding manuals section

of the configuration page.

15

Section 5: Managing User Accounts

SEER*Abs supports a single administrative user account (username = admin) and multiple

abstractor accounts. The admin user account is created during the initial installation on the

administrator’s computer. The system administrator configures SEER*Abs and creates a registry-

specific installation file. Registry managers and the SEER*Abs system administrator must define a

protocol for maintaining abstractor accounts.

• A single abstractor account may be created as SEER*Abs is installed on each workstation.

The abstractor using that computer would then complete the installation by defining a

password known only to them.

• Alternatively, the system administrator may create accounts for all abstractors during the

initial configuration. A protected list of unique passwords would be created. Accounts for

all abstractors would then be installed on all workstations.

There is no method for synchronizing the user accounts on multiple installations of SEER*Abs.

Once the system is deployed, you will need to add and remove users from each installation; or

modify a central version and re-install the software.

To add, modify, or delete user accounts:

1. Login as the administrator.

2. Open the Users Manager.

3. To add a new account, click Add User.

a. Provide a username.

b. Provide the initial password for the new user. The password must contain at least 1

lower-case letter, 1 upper-case letter, and either a digit or a special character. This

is the password that the user will enter the first time they login. They will then be

prompted to specify a password known only to them.

c. Alternatively, use the Generate button; the password field will be auto-filled with a

random password, and the un-encrypted version of that password will be available in

the clipboard so it can be copied into a spreadsheet or other secured document to

keep track of it until it is provided to the user. This step is necessary since there is

no way to retrieve an un-encrypted password after saving a user form.

d. You may enter values for the user-defined fields (optional). These fields are defined

in the User layout configuration files.

e. Click Save.

4. To delete a user account, click the X icon associated with the user account. The admin

account cannot be deleted.

5. To define a new password for an account:

a. Double-click the username or click the edit icon.

16

b. Click Change Pswd

c. Enter the new Password.

d. Verify the new password by re-entering it into the Repeat Password field.

6. To set or change the values of registry fields:

a. Double-click the username or click the edit icon.

b. Enter new values for the registry defined fields.

17

Section 6: Data Security

The SEER*Abs software is a data collection tool specifically designed for confidential medical data.

Security controls are built-in to the software as described below. However, these features do not

ensure full security and must be considered as only part of the registry’s security plan. SEER*Abs

must be used on a workstation that is physically secure and/or fully encrypted.

SEER*Abs provides the following mechanism to secure the data:

• Strong passwords:

1. Password must have a minimum length (see next section)

2. Password must contain 3 of the 4 groups: upper, lower, digit and special characters

3. Password must not contain three consecutive identical characters

4. Password must not share a sequence of 6 or more characters with the previous password

5. Password must not contain the username

6. Password must not be the same as the 24 previous passwords

The Admin user is a super-user and therefore only rules 1 to 3 apply to that user.

• Password minimum length: the minimum length is controlled by the configuration. The

minimum length can be set to less than 8 characters and there is no upper bound.

• Password expiration: by default, password will expire after 60 days. Although it is not

recommended to do so, the expiration time can be increased in the main configuration file;

it is also possible to disable the expiration entirely.

• Database encryptions: Derby is a file-based Java database stored in binary format. The

data are encrypted by Derby using the Data Encryption Standard (DES) 56 bits algorithm.

That algorithm is tied to a key that is required to make any interaction with the databases.

Without the key, external programs (implemented in Java or other languages) will be

unable to create a connection to the database.

When evaluating the data confidentiality aspects in SEER*Abs, keep the following in mind:

• The sample extract scripts distributed with SEER*Abs do not create encrypted files. The

extract scripts are maintained by registry staff and can be modified to create encrypted

files.

• SEER*Abs extracts are written to a directory that is selected by the user or defined by

registry IT in the configuration files. It is the registry’s and the user’s responsibility to write

the file to a secure location and to securely transfer the data to the registry.

• Data may be transferred directly between SEER*Abs and the registry database. The data

transfer is not encrypted. The synchronization needs to be done behind the registry’s

firewall or through a secured VPN.

• The database encryption is not unbreakable. It is the responsibility of the registry to ensure

physical security of the workstation. If used on a laptop in the field, the entire hard-drive of

the laptop must be encrypted.

18

Resources:

• NIST Computer Security Resource Center (http://csrc.nist.gov)

http://csrc.nist.gov/

